

Institute for Interlaboratory Studies

> Results of Proficiency Test Nickel release and Surface determination June 2023

Organized by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Author:Mrs. E.R. Montenij-BosCorrectors:ing. C.M. Nijssen-Wester & ing. R.J. StarinkApproved by:ing. A.S. Noordman-de Neef

Report: iis23V23

September 2023

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYZES	5
3	RESULTS	5
3.1	STATISTICS	6
3.2	GRAPHICS	7
3.3	Z-SCORES	7
4	EVALUATION	8
4.1	EVALUATION PER SAMPLE	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	COMPARISON OF THE PROFICIENCY TEST OF JUNE 2023 WITH PREVIOUS PTS	9
4.4	EVALUATION OF THE ANALYTICAL DETAILS	10
5	DISCUSSION	10
6	CONCLUSION	10

Appendices:

1.	Data, statistical and graphic results	11
2.	Determination of Nickel release and some Analytical Details on sample #23625	17
3.	Other reported Analytical Details on sample #23625	.19
4.	Detailed description of the Surface Determination on sample #23626	21
5.	Number of participants per country	23
6.	Abbreviations and literature	24

1 INTRODUCTION

Nickel has always been used in various applications for example as a plated substance on another metal or as an alloy. Nickel applications usually do not give problems, but when Nickel comes to prolonged and direct contact with the human skin sensitization can occur. When a person becomes sensitive to Nickel even the smallest amounts can provoke an allergic reaction. Nickel is the most frequent cause of contact allergy in Europe. Both the contact itself, sometimes enhanced by damaged skin, and skin conditions as sweat can cause the body to be exposed to Nickel. Nickel containing items that are used in prolonged human contact are tested for Nickel release. This to avoid products on the market with too much Nickel release. With this regulation it prevents that more people become sensitized. Products, like jewelry in piercings (earrings), watches or clothes fasteners, are tested in compliance with entry No. 27 to Annex XVII of Regulation (CE) 1907/2006 (REACH).

Since 2014 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of Nickel release and Surface Determination every year. During the annual proficiency testing program 2022/2023 it was decided to continue the proficiency test for the determination of Nickel release and Surface Determination.

In this interlaboratory study 101 laboratories in 27 countries registered for participation, see appendix 5 for the number of participants per country. In this report the results of the Nickel release and Surface determination proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send three identical non-coated metal plates labelled #23625 and one piece of a pendant labelled #23626 for Surface determination only. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

For the determination of Nickel release a batch of Nickel containing metal was purchased from a local retailer. The batch consisted of square metal pieces with a hole in one of the corners. The pieces were solid metal, prepared from one alloy and non-coated. The dimensions of each item were approximately $2 \times 2 \times 0.2$ cm and the hole had a diameter of approximately 0.5 cm. Three items were packed in a small plastic bag and vacuum sealed to avoid scratching of the items. In total 130 subsamples of three pieces each were prepared and labelled #23625.

The homogeneity of the subsamples was checked by determination of Nickel release using test method EN1811 on eight stratified randomly selected subsamples. Please note, a subsample is one bag with three items.

	Nickel release in µg/cm²/week
sample #23625-1	0.425
sample #23625-2	0.483
sample #23625-3	0.575
sample #23625-4	0.474
sample #23625-5	0.525
sample #23625-6	0.458
sample #23625-7	0.500
sample #23625-8	0.517

Table 1: homogeneity test results of subsamples #23625

From the above test results the relative standard deviation (RSD) was calculated and compared with 0.3 times the relative standard deviation estimated from the average of PT uncertainties of previous PTs from 2014-2021 in agreement with the procedure of ISO13528, Annex B2, in the next table.

	Nickel release
RSD (observed)	9.2%
reference method	iis PTs
0.3 x RSD (reference method)	8.5%

Table 2: evaluation of the relative standard deviation of subsamples #23625

The calculated relative standard deviation was in agreement with 0.3 times the target relative standard deviation. Therefore, homogeneity of the subsamples was assumed.

For the determination of surface determination only a batch of metal leaves, which were parts from earrings, was purchased from a local retailer. From this batch 130 small plastic bags were filled with one leaf. This small bag was placed in an outer bag and labelled #23626. No homogeneity tests were done over the subsamples because only surface determination has been requested for this sample. However, each leaf was weighed in advance to make sure that no large differences exist in the surfaces.

To each of the participating laboratories one sample #23625 and one sample #23626 were sent on June 7, 2023.

2.5 ANALYZES

The participants were requested to determine Nickel release on sample #23625 and to determine the surface only on sample #23626.

The participants were informed that the metal plates of sample #23625 are non-coated and a simulation of accelerated wear and corrosion did not need to be conducted. Also, that on critical examination some small irregularities such as slight scratches on the surface of the sample may be observed. The influence of these irregularities on the nickel release is negligible. This was proven by testing prior to use in this PT.

It was requested to report if the laboratory was accredited for the determination of Nickel release and to report some analytical details.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendices 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendices 1 and 2. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{(target)}$ = (test result - average of PT) / target standard deviation

The $z_{(target)}$ scores are listed in the test result tables in appendix 1.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

	z	< 1	good
1 <	z	< 2	satisfactory
2 <	z	< 3	questionable
3 <	z		unsatisfactory

4 EVALUATION

In this proficiency test no problems were encountered with the dispatch of the samples. Nine participants reported test results after the final reporting date and four other participants did not report any test results.

In total 97 participants reported 289 test results numerical test results. Observed were 9 outlying test results which is 3.1%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER SAMPLE

In this section the reported test results are discussed per sample. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 6.

Test method EN1811:11+A1:15 does not have a clear precision statement that mentions a repeatability and/or a reproducibility. In Annex A of test method EN1811:11+A1:15 is mentioned that the measurement uncertainty in a 2008 interlaboratory study was 46%, while in Annex B is stated that "The relative test method reproducibility in this ILC was 33.3%". As it is not clear which of the two statements, both mentioned in annexes, should be used for the target reproducibility it was decided to use a target reproducibility calculated with the Horwitz equation. This target obtained from Horwitz is dependent on the measured Nickel concentration, surface area and ranges from 54% at 0.3 μ g Ni/cm²/week up to 32% at 10 μ g Ni/cm²/week.

Please note, a new version of test method EN1811has been published in August of 2023.

sample #23625

- <u>Nickel release</u>: This determination may be problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>Surface determination</u>: The determination on the square piece may not be problematic. Six statistical outliers were observed in the reported range of 9.01-10.0 cm². No official test method exists for Surface determination. Therefore, no z-scores were calculated. The relative standard deviation for this sample after rejection of the statistical outliers is 1.0%.

sample #23626

<u>Surface determination</u>: This determination on a leaf may be problematic. Two statistical outliers were observed in the reported range of 0.33-1.13 cm². No official test method exists for Surface determination. Therefore, no z-scores were calculated. The relative standard deviation for this sample is 19% and larger than the range of the observed relative standard deviations in previous iis PTs (3.5-13%). It is also larger compared to the relative standard deviation of the Surface determination of the simpler shaped sample #23625 (1.0%). See also the discussion in paragraph 5.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from reference methods are presented in the next tables.

Parameter	unit	n	average	2.8 * sd	R(target)
Nickel release	µg/cm²/week	96	0.51	0.32	0.25
Surface determination	cm ²	91	9.58	0.26	n.a.

Table 3: reproducibility of tests on sample #23625

Without further statistical calculations it can be concluded that for the determination of Nickel release there is not a good compliance of the group of participants with the target reproducibility.

Parameter	unit	n	average	2.8 * sd	R(target)
Surface determination	cm ²	93	0.86	0.47	n.a.

Table 4: reproducibility of tests on sample #23626

4.3 COMPARISON OF THE PROFICIENCY TEST OF JUNE 2023 WITH PREVIOUS PTS

	June 2023	April 2022	June 2021	June 2020	June 2019
Number of reporting laboratories	97	112	96	104	127
Number of test results	289	331	191	205	126
Number of statistical outliers	9	11	7	11	5
Percentage statistical outliers	3.1	3.3%	3.7%	5.4%	4.0%

Table 5: comparison with previous proficiency tests

In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency test was compared expressed as relative standard deviation (RSD) of the PTs, see next table.

Parameter	June 2023	April 2022	June 2021	June 2020	2019-2014
Nickel release	22%	15%	21%	29%	18 - 44%
Surface determination	1.0-19%	0.9 – 13%	0.7 - 6.9%	2.5 – 3.5%	1.1 - 13%

Table 6: comparison of uncertainties of current PT with previous PTs

The uncertainty of the determination of Nickel release sample #23625 is larger in comparison with the uncertainty from last year and in line with previous years.

The uncertainty of the Surface determination of sample #23626 was larger when compared to previous PTs. This is probably due to the complex shape of the sample.

4.4 EVALUATION OF THE ANALYTICAL DETAILS

For the Nickel release sample #23625 the following can be summarized from the analytical details as reported by the participants. The details are given in appendix 2 and 3:

- 87% of the participants mentioned to be accredited for the determination of Nickel release.
- 63% of the participants have used new or disposable test vessels, 36 % used previously used test vessels. Of these previously used test vessels 27 participants has done a pretreatment and remarkably 4 participants have not done any pretreatment.
- Around 70% of the reporting participants used a ratio of approximately 1 mL test solution per cm² sample surface area. Test method EN1811:11+A1:15 prescribes the amount of initial test solution to be used to be 1 mL per cm² surface area.

For sample #23626 a variety of methods for the surface determination was described by 63% of the reporting participants. See appendix 4 for these detailed descriptions.

5 DISCUSSION

The calculated in-between item repeatability on the Nickel release results between the three items of sample #23625 showed a large variation over the participants (see appendix 2). The RSDr varies from 0.9% to 40.7%. One participant reported an extremely large RSDr of 109.1%. Only 33 participants reported test results with a RSDr in agreement with the target repeatability standard deviation of 4%. This 4% is estimated from EN1811:11+A1:15 as follows: 33.3% / 2.8 / 3. When evaluating the test results of only those 33 participants the average is not significantly different compared to the whole group of 96 participants. Remarkably, the variation over the test results of this subgroup is better and is in agreement with the estimated reproducibility calculated with the Horwitz equation. See appendix 1 for the summary of this sub evaluation.

6 CONCLUSION

It can be concluded that the majority of the participants had no problems with the determination of Nickel release.

However, each participating laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and increase the quality of the analytical results.

Determination of Nickel release on sample #23625; average result of three replicates in µg/cm²/week

lab	method	value	mark	z(targ)	remarks
210					
339	EN1811	0.4953		-0.15	
362		0.73		2.44	
452		0.3366		-1.90	
623	EN1811	 0 42		 - 0 0 0-	
023 840		0.42		-0.90	
841	EN1811	0.57		0.00	
1910	EN1811 + A1	0.7445		2.60	
2115	EN1811	0.65		1.56	
2121	EN1811 + A1	0.69		2.00	
2131	EN1811	0.02205	R(0.01)	-5.37	
2132	EN1811 + A1	0.5405	. ,	0.35	
2135	EN1811	0.303		-2.27	
2165	EN1811 + A1	0.546		0.41	
2184	EN1811	0.527		0.20	
2201		0.4956		-0.14	
2215	EN1811	0.4500		-0.12	
2236	ENIOTI				
2238	EN1811 + A1	0.447		-0.68	
2247	EN1811	0.725		2.39	
2250	EN1811	0.7384		2.53	
2255	EN1811 + A1	0.615		1.17	
2256	EN1811	0.262		-2.72	
2265	EN1811	0.51		0.01	
2284	EN1811	0.459		-0.55	
2209	EN 1011 + A1 EN 1811	0.514		0.00	
2290	EN1811	0.500		1 45	
2295	EN1811 + A1	0.51		0.01	
2310	EN1811	0.61		1.12	
2311	EN1811	0.673		1.81	
2326	EN1811	0.390	С	-1.31	First reported 0.882
2330	EN1811 + A1	0.614		1.16	
2347	EN1811 + A1	0.41		-1.09	
2350	EN 1811 + A1 EN 1811	0.436		-0.80	
2352	EN1811	0.490		-0.14	
2363	EN1811 + A1	0.507		-0.02	
2365	EN1811 + A1	0.4634		-0.50	
2366	EN1811	0.55		0.46	
2369	EN1811	0.300		-2.30	
2370	EN1811	0.497		-0.13	
2375	EN1011 EN1811	0.304		-1.00	
2377	EN1811	0.548		0.43	
2378	EN1811	0.503		-0.06	
2379	EN1811	0.522		0.15	
2380	EN1811 + A1	0.540		0.35	
2381	EN1811	0.571		0.69	
2305 2406	⊏N1011 EN1811	0.010		3.39 _0.47	
2429	EN1811	0.497		-0.13	
2449	EN1811	0.6133		1.15	
2459	EN1811	0.54		0.35	
2475	EN1811	0.536		0.30	
2482	EN1811	0.4129		-1.06	
2511	EN1811	0.592		0.92	
2522	EN 1811 EN 1811	0.50		-0.10	
2573	EN1811	0.354		-1 71	
2582	EN1811	0.564		0.61	
2590	EN1811	0.670	С	1.78	First reported 0.22
2602	EN1811	0.477		-0.35	·
2624	EN1811 + A1	0.261		-2.73	
2637	EN1811	0.6		1.01	
2652	EN1811	0.413		-1.05	
2000 2671	⊏NIOII + AI EN1811	0.401		-0.04 0.02	
2674	EN1811	0.5955		0.93	
2678					
2703	EN1811 + A1	0.574		0.72	
2719	EN1811	0.50		-0.10	
2720	EN1811	0.4936		-0.17	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lab	method	value	mark	z(targ)	remarks	
2818 EN1811 0.370 -1.53 2829 EN1811 + A1 0.483 -0.28 2864 EN1811 + A1 0.25 -2.85 2867 EN1811 + A1 0.360 -1.64 2900 0.360 -1.64 2912 EN1811 + A1 0.344 -1.82 2977 EN1811 0.3940 -1.26 3100 EN1811 0.519 0.11 3110 EN1811 + A1 0.46 -0.54 3110 EN1811 + A1 0.421 0.5576 3133 EN1811 + A1 0.421 1.82 3153 EN1811 + A1 0.471 1.82 3153 EN1811 + A1 0.674 1.82 3153 EN1811 0.604 1.05 3153 EN1811 0.604 1.05 3153 EN1811 0.5776 0.26 3190 EN1811 0.4787 -0.33 3228 EN1811 0.468 -0.26 3225 EN1811 + A1 0.46 -0.54 3230 In house	2737	EN1811	0.395		-1.25		
2829 EN1811 + A1 0.483 -0.28 2864 EN1811 0.541 0.36 2900 0.360 -1.64 2912 EN1811 0.358 C -1.66 2977 EN1811 0.358 C -1.66 2989 EN1811 0.358 C -1.66 3100 EN1811 0.3540 -1.26 3100 EN1811 0.519 0.11 3110 EN1811 0.464 -0.54 3111 EN1811 + A1 0.464 -0.61 3134 EN1811 + A1 0.464 1.05 3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3190 EN1811 0.616 1.18 3190 EN1811 0.577 0.68 3190 EN1811 0.516 0.26 3190 EN1811 0.4787 -0.33 3228 EN1811 0.485 -0.26 3230 In house 0.5776 C 0.76 <td< td=""><td>2818</td><td>EN1811</td><td>0.370</td><td></td><td>-1.53</td><td></td><td></td></td<>	2818	EN1811	0.370		-1.53		
2864 EN1811 + A1 0.25 -2.85 2867 EN1811 0.541 0.36 2900 0.360 -1.64 2912 EN1811 0.358 C -1.66 2977 EN1811 0.358 C -1.66 2989 EN1811 0.3940 -1.26 3100 EN1811 0.519 0.11 3110 EN1811 + A1 0.46 -0.54 3118 0.5576 0.54 3134 EN1811 + A1 0.421187 -0.96 3153 EN1811 + A1 0.474 1.82 3172 EN1811 0.604 1.05 3185 EN1811 0.604 1.05 3185 EN1811 0.463 1.05 3197 EN1811 0.477 0.68 3197 EN1811 0.4787 -0.33 3228 EN1811 0.4787 -0.33 3228 EN1811 0.466 -0.54 normality OK OK OK notutiers 1 0	2829	EN1811 + A1	0.483		-0.28		
2867 EN1811 0.541 0.36 2900 0.360 -1.64 2977 EN1811 0.358 C -1.66 2989 EN1811 0.358 C -1.66 3100 EN1811 0.3940 -1.26 3100 EN1811 0.519 0.11 3110 EN1811 0.46 -0.54 3116 EN1811 + A1 0.464 0.61 3134 EN1811 + A1 0.421187 -0.96 3153 EN1811 + A1 0.674 1.82 3172 EN1811 0.604 1.05 3182 EN1811 0.604 1.05 3182 EN1811 0.616 1.18 3197 EN1811 0.616 1.18 3210 EN1811 0.485 -0.26 3197 EN1811 0.485 -0.26 3225 EN1811 0.4787 -0.33 3228 EN1811 0.46 -0.54 normality OK OK OHy RSD <4% between replicates	2864	EN1811 + A1	0.25		-2.85		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2867	EN1811	0.541		0.36		
2912 EN1811 + A1 0.344 -1.82 2977 EN1811 0.358 C -1.66 First reported 0.217 2989 EN1811 0.359 0.11 3100 EN1811 0.519 0.11 3110 EN1811 + A1 0.46 -0.54 3118 0.5576 0.54 3133 EN1811 + A1 0.464 1.82 3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3190 EN1811 0.616 1.18 3190 EN1811 0.616 1.18 3210 EN1811 0.616 1.18 3210 EN1811 0.465 -0.26 3225 EN1811 0.4787 -0.33 3226 EN1811 0.46 -0.54 normality 0K 0K n 96 33 outliers 1 0 nean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.090 RSD = 18% <td>2900</td> <td></td> <td>0.360</td> <td></td> <td>-1.64</td> <td></td> <td></td>	2900		0.360		-1.64		
2977 EN1811 0.358 C -1.66 First reported 0.217 2989 EN1811 0.3940 -1.26 3100 EN1811 0.519 0.11 3110 EN1811 + A1 0.46 -0.54 3116 EN1811 + A1 0.46 -0.54 3134 EN1811 + A1 0.674 1.82 3135 EN1811 + A1 0.674 1.82 3172 EN1811 0.403 -1.17 3185 EN1811 0.604 1.05 3185 EN1811 0.616 1.18 3190 EN1811 0.577 0.68 3197 EN1811 0.516 1.18 3210 EN1811 0.577 0.68 3197 EN1811 0.485 -0.26 3228 EN1811 0.5776 C 0.76 3230 In house 0.5776 C 0.76 3231 In house 0.5776 C 0.76 7 96 33 0 0 0 0 0 <td>2912</td> <td>EN1811 + A1</td> <td>0.344</td> <td></td> <td>-1.82</td> <td></td> <td></td>	2912	EN1811 + A1	0.344		-1.82		
2989 EN1811 0.3940 -1.26 3100 EN1811 0.519 0.11 3110 EN1811 + A1 0.46 -0.54 3116 EN1811 + A1 0.5676 0.54 3134 EN1811 + A1 0.674 1.82 3173 EN1811 + A1 0.674 1.82 3174 EN1811 0.403 -1.17 3185 EN1811 0.604 1.05 3173 EN1811 0.604 1.05 3185 EN1811 0.616 1.18 3190 EN1811 0.577 0.68 3191 EN1811 0.429 -2.41 3220 EN1811 0.485 -0.26 32225 EN1811 0.485 -0.26 32230 In house 0.5776 C 0.76 7 EN1811 0.46 -0.54 96 33 Only RSD < 4% between replicates	2977	EN1811	0.358	С	-1.66	First reported 0.217	
3100 EN1811 0.519 0.11 3110 EN1811 + A1 0.46 -0.54 3118 0.5576 0.54 3134 EN1811 + A1 0.421187 -0.96 3153 EN1811 + A1 0.421187 -0.96 3153 EN1811 + A1 0.674 1.82 3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3185 EN1811 + A1 0.532 0.26 3190 EN1811 0.616 1.18 3210 EN1811 0.616 1.18 3210 EN1811 0.485 -0.26 3228 EN1811 0.4787 -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 mormality OK Orly RSD <4% between replicates	2989	EN1811	0.3940		-1.26		
3110 EN1811 + A1 0.46 -0.54 3116 EN1811 + A1 0.564 0.61 3118 0.5576 0.54 3134 EN1811 + A1 0.421187 -0.96 3153 EN1811 + A1 0.403 -1.17 3182 EN1811 0.604 1.05 3185 EN1811 + A1 0.532 0.26 3190 EN1811 0.577 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.645 -0.26 3225 EN1811 0.465 -0.26 3226 EN1811 0.465 -0.26 3228 EN1811 0.46 -0.54 normality 0.46 -0.54 normality OK OK n 96 33 outliers 1 0 nean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.255	3100	EN1811	0.519		0.11		
3116 EN1811 + A1 0.564 0.61 3118 0.5576 0.54 3134 EN1811 + A1 0.674 1.82 3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3185 EN1811 0.604 1.05 3185 EN1811 0.616 1.18 3210 EN1811 0.57 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.616 1.18 3220 EN1811 0.485 -0.26 3228 EN1811 0.485 -0.26 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK OK OK n 96 33 0.509 outliers 1 0 0.509 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.505	3110	EN1811 + A1	0.46		-0.54		
3118 0.5576 0.54 3134EN1811 + A1 0.421187 -0.96 3153EN1811 + A1 0.674 1.82 3172EN1811 0.403 -1.17 3182EN1811 0.604 1.05 3185EN1811 + A1 0.532 0.26 3190EN1811 0.616 1.18 3210EN1811 0.616 1.18 3225EN1811 0.616 1.18 3228EN1811 0.485 -0.26 3229EN1811 0.512 0.04 3230In house 0.5776 C 0.5776 C 0.76 First reported 0.7907 3237 S237EN1811 + A1 0.46 0.46 -0.54 $normality$ $0K$ 0.509 $n contairs10n contairs10n contairs10n contairs10n contairs10n contairs10n contairs10.255n contairs10.317n contairs0.3170.255$	3116	EN1811 + A1	0.564		0.61		
3134 EN1811 + A1 0.421187 -0.96 3153 EN1811 + A1 0.674 1.82 3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3185 EN1811 + A1 0.532 0.26 3190 EN1811 0.616 1.18 3210 EN1811 0.616 1.18 3210 EN1811 0.485 -0.26 3228 EN1811 0.512 0.04 3220 In house 0.5776 C 0.76 3230 In house 0.5776 C 0.76 7 EN1811 + A1 0.46 -0.54 -0.133 7 EN1811 + A1 0.46 -0.54 -0.11 9 0.5776 C 0.76 First reported 0.7907 3237 EN1811 + A1 0.46 -0.54 -0.11 9 0.04 33 0 -0.11 9 0.509 0.504 -0.504 9 0.509 0.504 -0.504 9.1133 </td <td>3118</td> <td></td> <td>0.5576</td> <td></td> <td>0.54</td> <td></td> <td></td>	3118		0.5576		0.54		
3153 EN1811 + A1 0.674 1.82 3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3185 EN1811 + A1 0.532 0.26 3190 EN1811 0.57 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 0.485 -0.26 3225 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 OK normality OK OK OK n 96 33 33 outliers 1 0 0 mean (n) 0.509 0.504 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.255	3134	EN1811 + A1	0.421187		-0.96		
3172 EN1811 0.403 -1.17 3182 EN1811 0.604 1.05 3185 EN1811 0.532 0.26 3190 EN1811 0.57 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK OK OK n 96 33 0.504 outliers 1 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.0909 RSD = 18%	3153	EN1811 + A1	0.674		1.82		
3182 EN1811 0.604 1.05 3185 EN1811 + A1 0.532 0.26 3190 EN1811 0.57 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 0.4787 -0.33 3228 EN1811 0.5776 C 0.76 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK OK Ok nean (n) 96 33 outliers 1 0 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.200	3172	EN1811	0.403		-1.17		
3185 EN1811 + A1 0.532 0.26 3190 EN1811 0.57 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 0.4787 -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK -0.54 normality OK OK n 96 33 outliers 1 0 nean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.200	3182	EN1811	0.604		1.05		
3190 EN1811 0.57 0.68 3197 EN1811 0.616 1.18 3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 0.4787 -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK -0.54 normality OK OK n 96 33 outliers 1 0 nean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0	3185	EN1811 + A1	0.532		0.26		
3197 EN1811 0.616 1.18 3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 + AC 0.4787 -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 Only RSD <4% between replicates	3190	EN1811	0.57		0.68		
3210 EN1811 0.29 -2.41 3218 EN1811 0.485 -0.26 3225 EN1811 + AC 0.4787 -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 Only RSD <4% between replicates	3197	EN1811	0.616		1.18		
3218 EN1811 0.485 -0.26 3225 EN1811 + AC 0.4787 -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 Only RSD <4% between replicates	3210	EN1811	0.29		-2.41		
3225 EN1811 + AC $0.4/87$ -0.33 3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK OK OK n 96 33 outliers 1 0 st.dev. (n) 0.512 0.504 R(calc.) 0.317 0.255	3218	EN1811	0.485		-0.26		
3228 EN1811 0.512 0.04 3230 In house 0.5776 C 0.76 3237 EN1811 + A1 0.46 -0.54 normality OK ONLy RSD <4% between replicates	3225	EN1811 + AC	0.4787		-0.33		
3230 In house 0.5/76 C 0.76 First reported 0.7907 3237 EN1811 + A1 0.46 -0.54 Only RSD <4% between replicates	3228	EN1811	0.512		0.04		_
3237 EN1811 + A1 0.46 -0.54 Only RSD <4% between replicates	3230	In house	0.5776	С	0.76	First reported 0.790	/
Inormality OK OK n 96 33 outliers 1 0 mean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255 0.200	3237	EN1811 + A1	0.46		-0.54		
normality OK OK n 96 33 outliers 1 0 mean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255						Only RSD <4% betv	veen replicates
n 96 33 outliers 1 0 mean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255		normality	UK 00				
outliers 1 0 mean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255		n outliere	90			33	
mean (n) 0.509 0.504 st.dev. (n) 0.1133 RSD = 22% 0.0909 RSD = 18% R(calc.) 0.317 0.255			1			0 504	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mean (n)	0.509	DCD - 000/		0.504	100/
r(caic.) 0.31/ 0.200		SIUCEV. (II)	0.1133	ROD - 22%		0.0909 KOD =	1070
of dov (Hopwitz) () ()()() (() ()())		R(Calc.)	0.017			0.200	
		SI.UEV.(HUIWILZ)	0.0907			0.0033	
COMPARA	compar		0.204			0.232	
B/EN1811:11+41:15) 0.169 0.168	compar	- R/FN1811·11+Δ1·15)	0 169			0 168	

Determination of Surface on sample #23625; results in cm²

lab	method	value	mark	z(targ)	remarks
210					
339		9.32			
362		9.94	R(0.01)		
452		9.63			
551					
623		9.59			
840		9.58			
1010		9.57			
2115		9.51			
2121		9.6598			
2131		9.522			
2132		9.600			
2135		9.42			
2165		9.623			
2184		9.544			
2201		9.60			
2215		9.03			
2236					
2238		9.554			
2247		9.721			
2250		9.582			
2255		9.512			
2256		9.569			
2200		9.68			
2289		9.57			
2290		9.59			
2293		9.594			
2295		9.8			
2310		9.5			
2311		9.53			
2320		9.415			
2347		9.61			
2350		9.565			
2352		9.661			
2357		9.651			
2303		9.03			
2366		9.59			
2369		9.625			
2370		9.61			
2373		9.634			
2375		9.53			
2371		9.05			
2379		9 537			
2380		9.564			
2381		9.516			
2385		9.6			
2406		9.5564			
2429		9.520			
2459		9.52			
2475		9.613			
2482		9.616			
2511		0.98	R(0.01)		
2522		9.60			
2538		9.597			
2573		9.02			
2590		9 449			
2602		10.028	R(0.01)		
2624		9.589	、 /		
2637		9.6			
2652		9.686			
2000		9.50 0.01	R(0.01)		
2674		9.69	(0.01)		
2678					
2703		9.01	R(0.01)		
2719		9.5	,		
2720		9.606			

lab	method	value	mark z	(targ)	remarks
2737		9.458			
2818		9.623			
2829		9.68			
2864		9.53			
2867		9.532			
2900		9.6185			
2912		9.29			
2977		9.5794			
2989		9.4140			
3100		9.614			
3110		9.63			
3116		9.63			
3118		9.4935			
3134		9.7958			
3153		9.359			
3172		9.363			
3182		9.62			
3185		9.596			
3190		9.6			
3197		9.58			
3210		9.59			
3218		9.70			
3225		9.81			
3228		9.62			
3230		9.327			
3237		9.1	R(0.01)		
0201			1 ((0.01)		
	normality	suspect			
	n	91			
	outliers	6			
	mean (n)	9.577			
	st.dev. (n)	0.0932	RSD = 1.0%		
	R(calc.)	0.261			

Determination of Surface on sample #23626; results in cm²

lab	method	value	mark z	(targ)	remarks
210					
339		0.49			
362		1.09			
452		0.75			
551					
623		1.13			
840		0.58			
841		0.78			
1910		0.975			
2113		0.55			
2121					
2132		0.6977			
2135		0.8622			
2165		0.991			
2184		1.003			
2201		0.942			
2215		0.9050			
2210		0.81			
2230		0.913			
2247		1.044			
2250		0.8927			
2255		0.961			
2256		1.06009			
2265		0.89			
2284		1.012			
2289		0.91			
2290		0.804			
2293		0.5930			
2235		0.82			
2311		0.655			
2326		0.651			
2330		0.8953			
2347		1.06			
2350		0.931			
2352		0.972			
2357		1.041			
2365		1.01			
2366		1.00			
2369		1.053			
2370		0.956			
2373		1.043			
2375		0.93			
2377		0.718			
2378		1.0			
2379		1.054			
2381		0.832			
2385		0.657			
2406		0.6453			
2429		0.963			
2449		0.85			
2459		0.977			
2475		1.08			
2482		0.7742			
2511		1.01			
2538		0.092			
2573		0.986			
2582		0.712			
2590		0.534			
2602		0.784			
2624		1.08			
2637		0.8			
2652		1.045			
2000 2671		0.040			
2674		1.062			
2678					
2703		0.86583924			
2719		0.77			
2720		0.91			

lab	method	value	mark	z(targ)	remarks
2737		0.8803			
2818		0.756	С		Reported: 75.617 cm ²
2829		0.845			
2864		0.82			
2867		1.041			
2900		0.56			
2912		0.697			
2977					
2989		0.63			
3100		0.914			
3110		0.69			
3116		0.95			
3118		2.0664	R(0.01)		
3134		0.74			
3153		0.905			
3172		1.028			
3182		0.81			
3185		0.848			
3190		0.8781			
3197		1.09			
3210		0.84			
3218		0.946			
3225		0.67			
3228		1.05			
3230		0.23904	R(0.05)		
3237		0.68			
	normality n outliers mean (n) st dev. (n)	OK 93 2 0.863 0.1662	RSD = 19%		
	R(calc.)	0.465	100 - 19/0	,	

Determination of Nickel release and some Analytical Details on subsamples #23625

lab	value plate 1 (µg/cm2/week)	value plate 2 (µg/cm2/week)	value plate 3 (µg/cm2/week)	RSDr (%) calc. by iis	volume test solution (mL)	ratio volume vs. area (mL/cm²)
210						· · ·
339	0.4505	0.513	0.5225	7.9	9.3	1/1
362	0.726	0.799	0.677	8.4		
452	0.3505	0.3219	0.3375	4.3	10	1 ml/cm2
551						
623	0.48	0.39	0.40	11./	20	1:1
840 941	0.52	0.63	0.57	9.7	9.0L 10	1:1
04 I 1010	0.52	0.03	0.37	9.7 7 1	10 35	1.1 3.6:1
2115	0.0000	0.766	0.7590	17.0	12	5,0.1
2113	0.57	0.58	0.75	14.7	20	
2131	0.02312	0.02099	0.02206	4.8	20	2.1
2132	0.6124	0.5475	0.4616	14.0	10	1:0.96
2135	0.372	0.377	0.161	40.7	15	1:1,59
2165	0.547	0.577	0.514	5.8	10	10ml:9.62cm ²
2184	0.532	0.545	0.503	4.1	10	1:1
2201	0.5152	0.4894	0.4829	3.4	9.6	1:1
2215	0.5050	0.5004	0.4887	1.7	13	13:9.65
2216	0.37	0.50	0.51	17.0	10	~1:1
2236					10	1.05
2230	0.434	0.449	0.459	2.0 5.3	10	1.00
2247	0.700	0.711	0.095	15.0	10	1.1
2255	0.587	0.618	0.639	4.3	10	1.1
2256	0.326	0.219	0.240	21.6	20	2 09
2265	0.50	0.56	0.46	9.9	20,0	2/1
2284	0.432	0.462	0.482	5.5	9.6	1:1
2289	0.507	0.523	0.512	1.6	9.6	1:1
2290	0.527	0.577	0.593	6.1		
2293	1.4462	0.2502	0.2241	109.1	25	2.6
2295	0.50	0.52	0.52	2.3	12	1.22
2310	0.61	0.64	0.57	5.8	10	1:1
2311	0.667	0.682	0.671	1.2	9.55	1:1
2326	0.387	0.382	0.403	2.8	9.4	9.4 ml / 9.145 cm2
2330	0.595	0.719	0.001	15.0	10	1.1
2350	0.411	0.400	0.421	1.7	10	$10/957 = 104 \text{ ml}/\text{cm}^2$
2352	0.494	0.502	0.423	2.0	15	2·1
2357	0.431	0.415	0 434	2.0	10	2.1
2363	0.525	0.442	0.553	11.4	9.63	1:1
2365	0.4356	0.4717	0.4829	5.3	101	1:1
2366	0.54	0.55	0.55	1.0		
2369	0.298	0.310	0.292	3.1		
2370	0.524	0.481	0.486	4.7	10	1:1
2373	0.361	0.382	0.349	4.6	9.63	1:1
2375	0.59	0.52	0.61	8.1	10	1:1
23//	0.562	0.553	0.530	3.0	9.7] 1ml /om²
2370	0.49	0.52	0.50	3.0 / 1	9.0	1:1
2380	0.561	0.342	0.525	86	12	1.1
2381	0.571	0.592	0.551	3.6	10	1.1
2385	0.735	0.846	0.866	8.6		
2406	0.4380	0.4446	0.5152	9.2	9.6	1mL:1cm2
2429	0.543	0.449	0.498	9.5	9.6	1:1
2449	0.61	0.61	0.62	0.9	10	1:1
2459	0.49	0.54	0.56	6.7	15	1.57
2475	0.586	0.572	0.451	13.8	9.60	1
2482	0.4126	0.3782	0.4479	8.4	9	1:1
2511	0.595	0.607	0.575	2.7	50	-
2522	0.51	0.53	0.47	0.1	50 10	0 1 ml : 1 am2
2573	0.097	0.393	0.338	4.5	96	1 mil. 1 cmz 1·1
2582	0.495	0.580	0.619	11.2	10	1.1
2590	0.681	0.640	0.691	4.0	20	2 mL/cm ²
2602	0.444	0.479	0.515	7.4	10	1:1
2624	0.239	0.333	0.414	33.6	15	1:1,5
2637	0.57	0.62	0.59	4.2		
2652	0.442	0.393	0.405	6.2		
2666	0.455	0.447	0.450	0.9	15	1.57
2671	0.62	0.59	0.57	4.2	10	1:1
2674	0.492	0.498	0.526	3.6	11	1.14
20/ŏ 2702	 0 526	 0 535			16	1 7-1
2719	0.44	0.50	0.55	11.0	10	1.7.1

lab	value plate 1	value plate 2	value plate 3	RSDr (%)	volume test	ratio volume vs. area
0700	(µg/cm2/week)	(µg/ст2/week)	(µg/cm2/week)	calc. by lis	solution (mL)	(mL/cm²)
2720	0.4875	0.5031	0.4901	1.7	9.61	
2/3/	0.428	0.387	0.369	1.1	15	1.58 mL/cm ²
2818	0.411	0.370	0.329	11.1		
2829	0.427	0.424	0.597	20.5	11	1.14
2864	0.26	0.23	0.26	6.9	10	1:1
2867	0.544	0.573	0.506	6.2	9.5	1:1
2900	0.335	0.428	0.317	16.5		
2912	0.355	0.335	0.343	2.9	20	2.15 mL/cm ²
2977	0.425	0.333	0.317	16.3	10	about 1
2989	0.3920	0.3840	0.4040	2.6	9.41	1:1
3100	0.512	0.496	0.548	5.1	9.6	1:1
3110	0.46	0.45	0.48	3.3		
3116	0.563	0.604	0.526	6.9	10	1
3118	0.6068	0.5142	0.5518	8.4	9	1:1
3134	0.40745	0.44713	0.40898	5.3	10	1:1
3153	0.766	0.579	0.678	13.9	9.4	1:1
3172	0.41	0.43	0.37	7.6		
3182	0.616	0.625	0.571	4.8	9.62	1:1
3185	0.492	0.593	0.511	10.1	10.0	10.0:9.60:0.53
3190	0.57	0.50	0.65	13.2	9.6	1:1
3197	0.570	0.597	0.680	9.3	12.1	1.26:1
3210	0.32	0.24	0.32	15.9	20	2.09
3218	0.406	0.494	0.555	15.4	9.7	1:1
3225	0.4815	0.4717	0.4829	1.3	9.8	1ml to 1cm2
3228	0 520	0 509	0 507	14	9.62	1
3230	0.572	0.583		1.3	15	1.1.61
3237	0.51	0.43	0 43	10 0	15	1 64
0201	0.0.	00	00			.,

Other reported Analytical Details for sample #23625

lab	ISO17025	pre-treat test vessel	pre-treatment procedure
210	accred.		
210			
362	Voc	No, new/disposable test vessel(s) were used	
452	No	No, new/disposable test vessel(s) were used	
551			
623	Yes	Other, please specify in the remarks below	
		Yes, the previously used test vessel(s) were	
840	Yes	pre-treated	
		Yes, the previously used test vessel(s) were	
841	Yes	pre-treated	Ultrasonicate the test flask with Hno3 % for at least 30 minutes
1010	Nie	Yes, the previously used test vessel(s) were	The previously used vessels were pre-treated with 5% nitric acid
1910	NO	pre-treated	for 4 hours
2115	Yes	pre-treated	
2121	Yes	No, new/disposable test vessel(s) were used	
		No, the previously used test vessel(s) were not	
2131	Yes	pre-treated	
2132	Yes	No, new/disposable test vessel(s) were used	
2135	Yes	No, new/disposable test vessel(s) were used	
2165	Yes	No, new/disposable test vessel(s) were used	
2184	Yes	No, new/disposable test vessel(s) were used	
2201	Yes	pre-treated	Nitric acid dilute 5% cleaning 4 hours
2201	103	Yes the previously used test vessel(s) were	Stored in 5% nitric acid for 4 H rinse and holder with deionised
2215	Yes	pre-treated	water and dry.
		Yes, the previously used test vessel(s) were	*
2216	Yes	pre-treated	Soaked new test vessels in 5% HNO3 for 4 hours
2236			
2238	No	No, new/disposable test vessel(s) were used	
2247	Yes	No, new/disposable test vessel(s) were used	-
2250	Yes	No, new/disposable test vessel(s) were used	ΝΔ
2233	165	Yes the previously used test vessel(s) were	NA
2256	Yes	pre-treated	pre-treated with diluted Nitric acid for overnight
2265	No	No, new/disposable test vessel(s) were used	
2284	Yes	No, new/disposable test vessel(s) were used	
2289	Yes	No, new/disposable test vessel(s) were used	
2290	Yes		
0000	Maa	No, the previously used test vessel(s) were not	
2293	Yes	pre-treated	
2295	Ves	No, new/disposable test vessel(s) were used	
2010	103	Yes the previously used test vessel(s) were	Pretreat with 5% Nitric acid, rinsed with deionized water and
2311	Yes	pre-treated	dried.
2326	Yes	No, new/disposable test vessel(s) were used	
		Yes, the previously used test vessel(s) were	
2330	Yes	pre-treated	
2347	Yes	No, new/disposable test vessel(s) were used	1
2350	Ves	res, the previously used test vessel(s) were	
2352	Yes	No new/disposable test vessel(s) were used	
2357			
		Yes, the previously used test vessel(s) were	
2363	Yes	pre-treated	use 5% HNO3 stay for 4 hours
2365	Yes	No, new/disposable test vessel(s) were used	
2366	Yes		
2369			
2370	res	No, new/disposable test vessel(s) were used	
23/3	Ves	No, new/disposable test vessel(s) were used	_
2375	Yes	No. new/disposable test vessel(s) were used	-
2378	Yes	No. new/disposable test vessel(s) were used	
		Yes, the previously used test vessel(s) were	
2379	Yes	pre-treated	5 % HNO3, 4 hrs
		Yes, the previously used test vessel(s) were	All vessels shall be pre-treated by being stored in dilute nitric
2380	Yes	pre-treated	acid for at least 4 hours. Then rinse with deionized water & dry.
2381	Yes	res, the previously used test vessel(s) were pre-treated	All test vessels are pretreated by 5% Nitric acid for 4 hours and then rinsed with deionized water and dry

lab	ISO17025 accred.	pre-treat test vessel	pre-treatment procedure
2385	Yes	No, new/disposable test vessel(s) were used	
		Yes, the previously used test vessel(s) were	Rinse with tap water, then soak in 10% nitric acid bath for 2 hr,
2406	Yes	pre-treated	rinse with DI water then dry in oven overnight before use
2429	Yes	No, new/disposable test vessel(s) were used	
2449	No	No, new/disposable test vessel(s) were used	
2450	Vaa	Yes, the previously used test vessel(s) were	EQ/ Nitria Acid for 4 hours
2459	res	Veg. the providually used test vegeol(a) were	5% Nullic Actuation 4 hours
2475	Yes	pre-treated	deionised water and dry
2482	Yes	No new/disposable test vessel(s) were used	
2511			
2522	No	No. new/disposable test vessel(s) were used	
2538	Yes	No. new/disposable test vessel(s) were used	
		No, the previously used test vessel(s) were not	
2573	Yes	pre-treated	
2582	Yes	No, new/disposable test vessel(s) were used	
2590	Yes	No, new/disposable test vessel(s) were used	
2602	Yes	No, new/disposable test vessel(s) were used	
2624	Yes	No, new/disposable test vessel(s) were used	
2637	No		
		Yes, the previously used test vessel(s) were	
2652	Yes	pre-treated	
2666	Yes	No, new/disposable test vessel(s) were used	
0674	Vaa	Yes, the previously used test vessel(s) were	nes tracted with pitric acid. Dinand with deignized water & dried
2071	res	Vos. the proviously used test vessel(s) were	pre treated with hithe acid. Rinsed with delonized water & dried
2674	Yes	pre-treated	5%HNO3
2678			
2703	No	No. new/disposable test vessel(s) were used	
		Yes, the previously used test vessel(s) were	
2719	Yes	pre-treated	
		Yes, the previously used test vessel(s) were	
2720	Yes	pre-treated	Soak in 5% nitric acid for 4 hours
2737	Yes	No, new/disposable test vessel(s) were used	
2818			
2829	Yes	No, new/disposable test vessel(s) were used	
2864	Yes	No, new/disposable test vessel(s) were used	
2867	res	No, new/disposable lest vessel(s) were used	-
2900			
2912	NO Voo	No, new/disposable test vessel(s) were used	
2977	Ves	No, new/disposable test vessel(s) were used	
2303	163	No, new/disposable lest vessel(s) were used	Vessels with lids the vessels shall be pre-treated by being stored
		Yes, the previously used test vessel(s) were	in a solution of 5% dilute nitril acid for at least 4 hours. After acid
3100	Yes	pre-treated	treatment, rinse the vessel with Grade I water and dry.
3110			· · · ·
		Yes, the previously used test vessel(s) were	Pre-treated in a solution of diluted nitric acid (~5%) for at least 4
3116	Yes	pre-treated	hours. Then rinse with deionized water and dry.
3118	Yes	No, new/disposable test vessel(s) were used	-
3134	No	No, new/disposable test vessel(s) were used	
3153	Yes	No, new/disposable test vessel(s) were used	
3172	Yes		
3190	No	res, the previously used test vessel(s) were	
5102	NU	Ves the previously used test vessel(s) wars	
3185	Yes	pre-treated	Immersion with 5% HNO3 nitric acid solution
3190	Yes	No. new/disposable test vessel(s) were used	
3197	Yes	No, new/disposable test vessel(s) were used	
3210	Yes	No, new/disposable test vessel(s) were used	
3218	Yes	No, new/disposable test vessel(s) were used	
3225	Yes	No, new/disposable test vessel(s) were used	1
3228	Yes	No, new/disposable test vessel(s) were used	
		Yes, the previously used test vessel(s) were	The plastic containers were pre-treated by storing in 5% nitric
3230	Yes	pre-treated	acid for at least 4 hours (Same as corrosion procedure)
3237	Yes	No, new/disposable test vessel(s) were used	

Detailed description of the Surface Determination on sample #23626

lab	description how the surface was measured and calculated
210	
339	Using a calliper and a spreadsheet with common shapes.
362	
452	using geometrical shapes.
551	
623	
	The leaf part is calculated according to the rhombus plus the o-ring part is calculated according to the circle, and minus the
840	holes in the leaf.
841	We split the sample into thumbnails and then sum the thumbnails.
1910	The area was measured with a calliper. The ellipse area formula was used for the calculations.
2115	
2121	
2131	Moosure the surface area with group paper
2132	with called the surface area with graph paper.
2165	with camper, calculated as Lingse, the size of the holes was estimated.
2184	
2201	This leaf is seen as a circle, an ellipse, and a triangle. Subtract the hollow area and add the side area
2201	SA=21 93mm2 SB=39 4mm2 SC=24 68mm2 S16=8 84mm2
	S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11+S12+S13+S14+S15=4.35mm2 STOTAL=SA+SB+SC+S16-
2215	(S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11+S12+S13+S14+S15)=90.50mm2=0.905cm2
	Samples are sprayed with a whitener and scanned via 3D scanner. The scan is uploaded to computer software that
2216	calculates the total surface area.
2236	
2238	Calculated by the area of an approximate ellipse
2247	by Vernier Calliper
2250	Measurement by calliper. Area calculation: nollow cylinder and a summary of rectangular solids.
2255	Area calculated by considering Parabola & circle
2200	1X mathematical surface calculation with digital calliner 1X digital surface calculation with App
2203	Drawing the outline on gird paper then calculate the area by the ratio of weight to area
2204	Suppose the main body part of leaf is a ellipse and the tail part of the leaf is a circle. Calculate all surface area including
2289	thickness. Then subtract the surface area of hollow parts to obtain the final surface area of the sample.
2290	
2293	Using graph paper, trace the sample and upscaling it.
2295	3D scanner
2310	Calculated surface area of ellipse and circle by using Vernier calliper.
2311	Consider four triangle surface area =1/2 X base X Hight X 4 =1/2 X 0.52 X 0.63 X 4 =0.655 cm2
	Divide the whole product into two parts(one is triangle and other one is trapezium). Consider cavities as rectangle & upper
2326	parts of pendant consider outer and inner cavity circle also take thickness of pendant by considering it rectangle (I X w).
2330	
2347	I was calculated by the sum of each part
2000	Double sided leaf area minus the area of the hollowed out part plus the side area and the area of the hollowed out inner
2352	edge
2357	5
2363	none
2365	
2366	
2369	
2370	
0070	Compare the blade to an ellipse, subtract the area of the hollow part (similar to circular, elliptical, triangular, trapezoidal), and
2373	ado tre suriace area or the nonicov part and the other migrate or the blade.
2375	weine asume on minimetre paper. We used uigital camper to measure the side surface areas.
2378	
2379	By Vernier calliner
2010	This article considered as two triangles that formula is (axh)/2. Here a=base, h=height & one rectangle that's formula is AxB.
2380	Here A=Length, B=Width. Top part considered circle that formula is r ² Here r=radius.
	In this pendant we found ellipse, circle and cylinder. Then measure the area and added. Finally minus with the gap area and
2381	found 0.832 cm2.
2385	
2406	Gravimetric method using graph paper with magnifying.
2429	Divide the sample into several regular shaped parts, calculate the surface area
2449	Calculated the are by calaulating the area of small areas and then adding
2459	Area was calculated by graph methodology considering whole leaf (sample). Average value of 04 measurements are taken.
0175	we use a graph paper to calculate the surface: we draw the pendant on the graph paper. We calculate the number of sqare.
24/0	we obtain the surface for one face. After we multiplicate by 2 to obtain the total surface of the perioditit.

description how the surface was measured and calculated lab Sample surface was copied and magnified, copy was cut out and weighed against paper with known area. Girth was measured by using wire on all edges after fixing the magnified copy with needles and scaled down. Thickness was measured with a digital calliper. Area (surface) = 0,2671 cm²; Girth = 10 cm; Thickness = 0,24 mm 2482 (2 * 0,2671) cm² + 10 cm * 0,024 cm = 0,7742 cm 2511 2522 Our lab used the digital vernier calliper. 2538 2573 The pendent roughly devided into different shapes (Triangle, Rectangles, Trapezoid and calculate the surface area and got 2582 the total) 2590 Scan flat object with millimeterpaper as background. Digitaly Zoom in sufficiently and print enlarged image of object with millimeterscale on paper. Cut defined rectangular area around the object and weigh. Then cut the image of the object out 2602 and weigh. Surface area is proportional to paperweight. 2624 2637 2652 I divided the object into four triangles, added them together, subtracted the empty space, then multiplied by two for the 2 2666 faces 2671 Using a Digital Vernier Calliper 2674 measured by vernier calliper calculated by calculator 2678 The item was treated as a series of shapes such as an ellipsoid, cuboid, triangle or circle. Each shape had the surface area 2703 calculated and then added or subtracted accordingly 2719 2720 Calculate by converting leaves into regular shapes through filling methods 2737 Calculate the overall area first, then deduct the area of the hollow part 2818 2829 2864 Draw on a 10*10 mm2 drawing, calculate the grid. 2867 Parts of the samples were divided into several shape rules, calculating the surface area 2900 2912 The area of flat surface is measured with graph paper. The area of side surfaces is measured with calibrated calliper 2977 Firstly take Circle on upper side. Then mark the oval of over all leave. Use edges outside the oval Half Circle. Take all cavity using formaula of Circle, Trapazium, Triangle & Rectangles. We subracted all Cavity from surface area. After the sum of all 2989 area to get 0.63 cm2 3100 Use a vernier calliper to calculate the area, treat the sample as an ellipse, and then subtract the area of the hole 3110 The area of each part was calculated by assuming their respective common geometrical shapes and each dimension was 3116 measured by callipe the sample is copied with 400% magnification, then the sample is placed on millimeter block paper. the result of duplicating the sample in millimeter blocks is then calculated for its area. calculate the area of the thick part of the sample. the final result 3118 is the area of the upper+bottom+thick ar Scanning, magnifying, cutting perimetrically (empty spaces cut out), weighting and comparing its mass with mass of sheet 3134 of known area. The dimensions are measured by digital calliper. The surface area of the pendant is calculated as two oval shapes. The empty space is subtracted as different shapes including circle, rectangle, triangle and trapezoid. The surface area of the 3153 thickness of the outer and inner edge is then added. 3172 Using Equation 1/2 x W x H for 9 point. Using Equation 1/2 x (parallel side effect) x H for 2 point. Using Equation 2 x 3.14 x r x h for 1 point. Using Equation W x L for 11 point. Using Equation 3.14 x (R2 - r2) for 1 point. Using Equation (3.14/4) x D x d 3182 for 2 point. Calculation after manual measurement with digital display vernier calliper 3185 First,calculate the area of the sample as an ellipse,and then subtract the area of the hollowed out rectangles and circles,And 3190 then multiply by 2 to get the final result 3197 Surface area of sample was calculated using formula of a few rectangular prisms 3210 3218 Total area = Leaf area + Connecting ring - hollowing=0.998cm2 + 0.050cm2 - 0.102cm2=0.946cm2 3225 Use a grid paper with defined area as reference Measure the overall length/width and the length/width of the hollowed-out part, then use the cut-and-patch method to turn it 3228 into a rectangle to calculate the area. Area of leaf pendant = [Area of Major Leaf Shape + Area of circle (at the base of the leaf)] - Area of 15 inner designs on leaf 3230 = [0.387550 + 0.0282884] - 0.1768) = 0.2390384 cm2 3237

Number of participants per country

3 labs in BANGLADESH

1 lab in BRAZIL

1 lab in BULGARIA

1 lab in CAMBODIA

4 labs in FRANCE

8 labs in GERMANY

1 lab in GREECE

1 lab in GUATEMALA

8 labs in HONG KONG

4 labs in INDIA

2 labs in INDONESIA

8 labs in ITALY

1 lab in KOREA, Republic of

1 lab in MAURITIUS

1 lab in MOROCCO

30 labs in P.R. of CHINA

4 labs in PAKISTAN

1 lab in POLAND

1 lab in SRI LANKA

1 lab in SWITZERLAND

2 labs in TAIWAN

2 labs in THAILAND

2 labs in TUNISIA

4 labs in TURKEY

2 labs in U.S.A.

2 labs in UNITED KINGDOM

5 labs in VIETNAM

Abbreviations

С	= final test result after checking of first reported suspect test result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner's outlier test
R(0.05)	= straggler in Rosner's outlier test
E	= calculation difference between reported test result and result calculated by iis
W	= test result withdrawn on request of participant
ex	= test result excluded from statistical evaluation
n.a.	= not applicable
n.e.	= not evaluated
n.d.	= not detected
fr.	= first reported
f+?	= possibly a false positive test result?
f-?	= possibly a false negative test result?

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- 12 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)